Announcements

Announcing *NEW* IBACS Leadership

The IBACS executive committee is thrilled to announce the appointment of three new directors who will assume leadership of the Institute this fall. Their selection culminates from a major visioning process involving community feedback (2021-22), a University-wide request for nominations (fall 2022), a review of qualifications and candidates' willingness to serve, candidate interviews with the executive committee (winter 2023), and a final review of recommendations by the CLAS Dean Juli Wade. 

New IBACS Directors

Emily Myers, Director of Training
Professor of Speech, Language, and Hearing Sciences;
Professor of Psychological Sciences; Perception, Action, and Cognition Research Program

Photo of Emily Myers

Our new Director of Training will work to connect and publicize UConn’s many outstanding training programs in the brain, cognitive, and neurosciences space. Myers will work with leadership of existing programs to build strengths and optimize use of shared resources. She will coordinate with departments to support and grow opportunities for cross-training (e.g., inter- disciplinary training programs that cross over traditional degree programs). She will also manage IBACS Graduate and Undergraduate Student Summer Award programs, and work with the Director of Research to support and coordinate graduate lines (RAs) for students working in our service cores.

John Salamone, Director of Communication and Outreach
Board of Trustees Distinguished Professor of Psychological Sciences; Behavioral Neuroscience Research Program

Our new IBACS Director of Communication and Outreach will manage the outward face of IBACS, including the curation of our website/media presence – both inside and outside the University. John will work to enhance integration and cooperation among departments, programs, and centers critical to the thriving brain, cognitive, and neurosciences space at UConn. This will include improving the coordination of related talk and seminar series, ListServs, etc. Salamone will work to engage new IBACS stakeholders, and to build new interdisciplinary connections and breadth of representation within the Institute and its initiatives. 

Photo of John Salamone

Inge-Marie Eigsti, Director of Research
Professor of Psychological Sciences; Clinical Research Program

Photo of Inge-Marie Eigsti

Our new Director of Research will work to support existing and promote new interdisciplinary research in the brain, cognitive and neurosciences space. Eigsti will strive to increase external funding and sustainability of IBACS-affiliated programs and service cores. She will manage the IBACS Seed Grant Programs and work with IBACS-affiliated service cores in support of their respective missions – including a newly refurbished EEG/eye-tracking lab, and our new Science Alliance Mobile (SAM), which will bring cutting-edge mobile research facilities to new off-campus test sites and outreach locations. She will organize speaker events, and work together with the Director of Training and Director of Communication/Outreach where missions overlap.

All three directors will begin their positions in Fall 2023 and serve three-year terms.

Seed Grant Recipients 2022-2023

IBACS Seed Grants provide funding for collaborative research projects across the brain and cognitive sciences. Seed Grants also support applications for equipment, research workshops, events, and other activities compatible with the mission of the Institute.

2022-2023 Recipients

Learn about the PIs and projects who received IBACS Seed Grants this year.

Yulia Bereshpolova and Maxim Volgusev, Psychological Sciences

Title of Project: Intracellular analysis of thalamic input to visual cortex in awake brain

Visual perception is dramatically influenced by changing level of alertness. While being awake and fully alert is optimal for vision, we still can detect and perceive visual stimuli while drifting to drowsiness and even light sleep states. The goal of our study is to understand how synaptic connections between the thalamus and cortical neurons which are responsible for mediating visual perception are changed during transition from the alert to drowsiness and light sleep and how these changes affect vision.

Xiaojing Wang, Neuroscience, UConn Health

Title of Project: Identifying the Cellular Composition of the Inferior Colliculus

The inferior colliculus (IC) is a major hub in the central auditory system and is implicated in tinnitus and speech processing difficulties. While different cell types in the IC have been identified, an un-biased approach that encompasses all cell types at once is still missing.

This project aims to establish a dataset of the cell types present in the IC of adult mice with normal hearing and after noise-induced hearing loss via single-nucleus RNA sequencing.

Brian Kelley, Neurosurgery, UConn Health

Title of Project: Neuronal Responses to Diffuse Axonal Injury

Diffuse axonal injury (DAI) is a major component of traumatic brain injury-related morbidity. Despite better understanding of DAI mechanisms, there have been minimal improvements in clinical outcomes. Recent basic science experiments show that neurons undergoing DAI within a region close to the cell body do not die. This unanticipated finding prompted the current study’s aim to determine the cellular mechanisms responsible for this observation. We anticipate our results will provide insights into this survival process.

Brittany Lee, Psychological Sciences

Title of Project: Investigating reading disability and comprehension using eye movements

Expository texts are informational texts that are particularly difficult for children to read and comprehend. They place greater cognitive demands on the reader compared to stories, making them especially challenging for children with reading disability. We will measure children's eye movements while they read different kinds of texts to better understand what makes expository comprehension so difficult for children with and without reading disability. With this knowledge, we hope to tailor reading instruction and intervention.

Mallory Perry-Eaddy, Nursing

Title of Project: Pediatric Recovery after sepSIS Treatment and the Microbiome (PERSIST-Microbiome)

Critically ill children who survive the Pediatric Intensive Care Unit are at increased risk of new cognitive dysfunction after they leave the hospital. While specific mechanisms have been considered, the underlying biological reasons are largely unknown. PERSIST-Microbiome aims to explore the potential role of the gut microbiome in critically ill children, especially those with inflammatory conditions such as sepsis and pneumonia, and their recovery after critical illness as it pertains to cognitive outcomes (i.e. gut-brain axis).

Gregory Sartor, Pharmaceutical Sciences

Title of Project: RNA-targeted Therapeutics for Substance Use Disorder

For several years, noncoding RNAs (ncRNAs) have been implicated in drug use and relapse, yet ncRNA-targeted therapeutics have not advanced to clinical studies. The lack of translational progress is largely due to the poor physicochemical properties of established RNA interference approaches. Recent innovations have revealed that small molecules can selectively target ncRNAs and produce physiological effects in vivo. Here, we will test and develop novel, ncRNA-targeted small molecules for the treatment of substance use disorder.

Erika Skoe, Speech, Language, and Hearing Sciences

Title of Project: COVID-19 and Central Nervous System Dysfunction

COVID-19 is a global health crisis impacting the health of millions. While some recover fully, others develop a poorly understood post-viral syndrome characterized by “brain fog.” These symptoms have raised concerns that the virus, or its sequelae, may cause enduring neurocognitive symptoms from central nervous system (CNS) damage. In collaboration with Dartmouth Medical School, this study uses central auditory testing methods to study CNs function in control and patients with Post-Acute COVID Syndrome (PACS).

Ephraim Trakhtenberg, Neuroscience, UConn Health

Title of Project: Novel mechanisms inhibiting axonal regeneration after optic nerve injury

Dr. Trakhtenberg was awarded a seed grant that will fund an exploratory research project aimed at testing a novel hypothesis regarding the molecular mechanisms which inhibit regeneration of injured axons. Axons are the connections through which neurons in the brain communicate with each other over long distances. If these axons are disrupted by trauma or stroke, they will not regenerate spontaneously. In this project we will study the mechanisms which prevent injured axons from regenerating

Pengyu Zong, Neuroscience, UConn Health

Title of Project: Novel therapy for ischemic stroke by targeting TRPM2-PKCy

TRPM2-NMDAR coupling promotes brain injury during stroke, while the underlying mechanism remain unclear. PKCy is an activator for NMDAR. I observed that TRPM2 physically associates with PKCy, and developed a drug to dissociate their binding. I hypothesize that the enhanced activity of NMDAR caused by TRPM2 is mediated by PKCy. In this study, I will test the protective effects of my drug against ischemic neuronal death and brain damage.

Undergraduate Research Award Recipients 2022-2023

The Undergraduate Research Supply Award provides students with funds that they can use toward supplies and other expenses associated with an ongoing independent research project. The Undergraduate Summer Research Award provides funds for students to conduct independent research during the summer session.

Fall 2022 and Spring 2023

Research Supply Award Recipients

  • Poorva Bagchee – Advisor: Joanne Conover
  • Joseph Mooney – Advisor: Geoffrey Tanner
  • Sheela Tavakoli – Advisor: Etan Markus
  • Trevor Religa – Advisor: David Martinelli
  • Linnea Budge – Advisor: Robert Astur
  • Francine Cai – Advisor: Geoffrey Tanner
  • Elton Cross – Advisor: Gerry Altmann
  • Sarah Davey – Advisor: Adrian Garcia-Sierra
  • Bailey Morte – Advisor: Etan Markus
  • Caryssa Drinkuth – Advisor: Gregory Sartor

Summer 2022

Summer Research Award Recipients

  • Karen Alex – Advisor: Holly Fitch
  • Laila Almotwaly – Advisor: Geoffrey Tanner
  • Marissa Birmingham – Advisor: Inge-Marie Eigsti
  • Christopher Engborg – Advisor: Natale Sciolino
  • Mumu Fang – Advisor: Linnaea Ostroff
  • Arden Ricciardone – Advisor: Emily Myers
  • Alyssa Sirisoukh – Advisor: Nicole Landi
  • Nicola Wilk – Advisor: Whit Tabor
  • Julie-Ann Williams – Advisor: Umay Suanda

Publication Award Recipients 2022-2023

Seed Grant Recipients 2021-2022

IBACS Seed Grants provide funding for collaborative research projects across the brain and cognitive sciences. Seed Grants also support applications for equipment, research workshops, events, and other activities compatible with the mission of the Institute.

2021-2022 Recipients

Learn about the PIs and projects that received IBACS Seed Grants this year.

Michael O'Neill, Molecular and Cell Biology

Title of Project: Transgenerational Epigenetic Effects on Neurodevelopment and Behavior

In collaboration with Dr. Holly Fitch and the Murine Behavioral Neurogenetics Facility we are investigating the transgenerational epigenetic effects on mouse behavior brought on by mutations in the Xlr family of genes on the X chromosome. Abnormal expression of these genes during spermatogenesis alters epigenetic signatures on DNA in sperm that appear to affect neurodevelopment of offspring. This research is relevant to our understanding the male bias in the prevalence of autism spectrum disorder.

James Dixon, Psychological Sciences 

Title of Project: Semantic of Collective Behavior

Humans are very good at perceiving the meaning of a group's behavior (e.g., an interested class, a volatile crowd). In team sports, such as soccer, the meaning of group behavior is clear to experienced observers and changes dynamically with the game. This project investigates how social information is carried in human collective behavior by combining state-of-the-art learning algorithms with physical models that rule the dynamics and kinematics of bodies in the domain of soccer.

Caroline Larson, Psychological Sciences 

Title of Project: Language-related brain activity project

The goal of this project is to better understand brain activity during language processing in individuals with language impairment. We will examine brain activity via functional magnetic resonance imaging (fMRI) in young adults with language impairment who have versus do not have co-occurring Autism Spectrum Disorder. This work will identify patterns of language-related brain activity associated with language impairment that may be present regardless of co-occurring conditions. 

Whit Tabor, Psychological Sciences 

Title of Project: Transformative Compromise: How Social Groups Transcend Limiting Frames

When a community finds itself in conflict about an important choice, compromise may be needed.  Despite its necessity, compromise has a bad name---people generally prefer not to compromise if they can avoid it.  Nevertheless, sometimes the right amount of compromise can lead to transformation---the group may reach a new dynamic that is universally preferred.  We are exploring the conditions under which this does and does not happen via coordination-game experiments and computational modeling.

Haim Bar, Statistics

Title of Project: Modeling and visualizing the formation of brain cavities covering from stem cells

We will develop and analyze statistical models for brain cavities (ventricles) covering formation, a process occurring during infancy, in which stem-cells divide and form lining cells. Abnormal ventricle enlargement may be harmful to normal development of the infant’s brain. We will develop software which will show 3D animations of the ventricle’s evolution over time and will be used by neuroscientists and pediatric neurosurgeons to detect abnormal expansion of the forebrain ventricles in a non-invasive manner.

Summer Graduate Fellows 2022

IBACS Summer Graduate Fellowships provide three months of research funding to graduate students working on topics with relevance to the brain and cognitive sciences.

2022 Fellowship Recipients

Christopher Babigian, Pharmaceutical Science

Current Research: Studies strongly support the involvement of BET proteins in drug-seeking behaviors but fail to address functional roles of individual BET proteins and BD-selective BET mechanisms (BD1 vs. BD2) involved in drug-seeking behaviors. Given the potential side effects linked to pan-BET inhibitors, (i.e., cognitive effects such as memory impairment) new approaches with a high degree of selectively and mechanistic insight are needed to advance BET therapeutics as a viable treatment option for SUD. My current studies build on promising data from our lab (mentioned in the previous section) by using selective, clinically relevant tools to interrogate domain-selective mechanisms of BET proteins in advanced animal models of cocaine use disorder (CUD). My hypothesis is that domain-selective BET inhibition will attenuate drug-seeking behaviors in advanced models of CUD without causing side effects commonly seen with non-selective approaches. Results from these experiments will uncover safer more selective therapeutic options for the treatment of CUD. Data collected from these experiments will be used as preliminary data for my NIH F31 application.

Specifically, I am investigating the impact of domain-selective BET inhibition on cocaine-seeking behaviors. For translational purposes I am testing RVX-208 in more advanced and clinically relevant animal models of CUD disorder (economic demand and extinction/reinstatement following short- and intermittent-access cocaine self-administration).

Cynthia Boo, Psychological Sciences

Current Research: As a part of Dr. Letitia Naigles and Dr. Deborah Fein’s Longitudinal Study of Early Language (Naigles & Fein, 2017), my current research has continued to compare language sampling contexts in children with ASD’s language abilities. I am investigating the production of stative language in teenagers with ASD across two different narrative contexts (storybook versus personal narratives). Studies have found that children with ASD are less likely to produce stative language (e.g., happy, think, confused) compared to their TD peers (Tager-Flusberg, 1992; Siller et al., 2014). However, most of these studies have been conducted solely in the context of storybook narratives, which may not be appropriate for adolescents with ASD. Additionally, Losh & Capps (2003) found differences in volume and complexity between storybook and personal narratives, suggesting that different prompts may afford different language use.

Preliminary findings from these analyses support the idea that language production varies by context. Overall, children from both groups produced fewer stative language terms in the context of storybook narratives than personal narratives. In other words, tapping into personal experiences, especially those with emotional associations, elicited more stative language regardless of diagnostic status. Thus, when assessing stative language production, researchers should consider the ability of the narrative prompt to elicit these terms.

Hayes Brenner, Psychological Sciences

Current Research: I am currently working with Dr. Edward Large in his music dynamics lab. I am contributing to the development, coding, and implementation of nonlinear oscillation networks within MATLAB. These networks seek to model the neurobiological process of rhythmic entrainment (i.e. syncing up to an external oscillating pattern) by mimicking the synchronous neuronal activity within the auditory and motor networks that occurs when one is listening to, and then entrains to, a rhythmic pulse. We hope to expand the scope of this model to encompass entertainment for both Western rhythms (i.e. 4/4 standard time signature) and non-Western rhythms (specifically, nonisochronus Balkan rhythms, typically in 7/4 time signature).

Next semester, I am planning on developing a MATLAB model to represent the dynamic turn-taking process of conversation in neurotypical populations, applying what I have learned with the aforementioned rhythmic networks. This will involve reading up on the literature surrounding the topic and expanding my knowledge of nonlinear dynamics and MATLAB.

Collectively, all of this research rests at the intersection of psychology, neuroscience, physics, mathematics, computer science, linguistics, social psychology, and music cognition.

Shawn Cummings, Speech, Language and Hearing Sciences

Current Research: My current research at UConn reconsiders classic ideas in speech communication, specifically through the lens of the lexically guided perceptual recalibration paradigm. ~200 published manuscripts have used this paradigm or a variation since its conception by Norris et al. in 2003, and conventions have naturally developed in theoretical assumptions as well as experimental design. These have allowed for ease of access to important questions, but after two decades of research it is now worth specifically (1) re-examining the role of specific acoustic stimulus properties, especially tied to their method of creation, (2) questioning paradigmatic assumptions such as measuring learning as a between-subject effect, and (3) re- evaluating theoretical characterizations such as perceptual learning being ‘talker specific’.

This line of research is itself interdisciplinary: the paradigm of interest (how cognitive mechanisms deal with variation in sound to meaning mapping in speech) is relevant to and used by linguists, psychologists, speech scientists, cognitive scientists, and others. Understanding, describing, and evaluating the effects as we do –through marrying human behavioral data with an ‘ideal observer’ distributional learning model of incremental adaptation (Kleinschmidt & Jaeger 2015)—additionally connects artificial and biological systems.

Lee Drown, Speech, Language and Hearing Sciences

Current Research: Our work will continue to examine the interplay between voice and phonetic processing by investigating the clinical implications of the individual differences associated with talker adaptation, especially in individuals with lower reading ability. Examining the interaction between voice and phonetic processing will (1) contribute to a theoretical understanding of talker adaptation in speech perception and (2) pave the way for identifying evidence-based practices that may play a role in remediating dyslexia. It is established that individuals with lower reading ability, such as individuals with dyslexia, show impairment in voice identification (Perrachione, Del Tufo & Gabrielli, 2011). It is also known that poor readers, while showing a typical sensitivity to transitional probabilities inherent in language structure, demonstrate deficits in procedural learning (Gabay, Thiessen & Holt, 2015). It remains unknown if impaired voice identification in individuals with poorer reading ability reflects poor associative learning, or merely points towards a reduced sensitivity to the statistical probabilities in the speech signal as prior findings suggest (Perrachione, Del Tufo & Gabrielli, 2011). If poor readers do indeed have augmented difficulty identifying voices compared to typical readers, a subsequent benefit to talker adaptation is also present.

Wesley Leong, Psychological Sciences

Current Research: I am continuing to analyze the Alice EEG datasets to better explain our results, and to rule out potential confounds. The next step is to see if these effects generalize to other linguistic stimuli. To do this, I will use existing EEG data collected by two students in the L&C division – Yanina Prystauka and Zac Ekves – that was recorded while participants read multiple two- sentence pairs. Each pair involved some agent interacting with an object, and so we can build a similarity profile of the agent across both sentences and see if the effect persists after averaging across trials. I will also analyze other publicly-available EEG data, such as the upcoming Le Petit Prince corpus (Stehwien et al 2020), which will feature data from 26 different languages. In the spirit of my previous research, this upcoming work will involve some combination of engineering, neuroscience, psychology, and linguistics.

Prianka Murthy, Psychological Sciences

Current Research:

Up to this point, we have collected some pilot EEG data examining magnocellular (M) pathway functioning in both healthy controls and schizophrenia patients. The EEG data was collected to study visual integration deficits using the Jitter Orientation Visual Integration Task. This task was designed to measure M pathway functioning, which has been indicated to be the primary pathway connected to visual integration deficits (Keane et. al, 2016). We collected data from about 35 healthy participants and 35 schizophrenia patients and will be analyzing the collected EEG data to gain a better understanding M pathway functioning in these populations. Among the healthy populations, we had each participant take the Schizotypal Personality Questionnaire in order to organize the healthy participants into a spectrum of low to high schizotypal traits. This was to understand whether there is a relationship between schizotypal traits and visual integration deficits, and whether this relationship could serve as an indicator of larger functioning issues. Being able to compare the healthy and patient population data will enable us to gain a better understanding of differential M pathway functioning, as well as how schizotypal traits may create certain deficit patterns similar to schizophrenia patients. This research is interdisciplinary in its comparison of neural pathway data and behavioral data, and our next step is to understand how this affects functional outcomes in patient populations.

Aliyar Ozercan, Philosophy

Current Research:

The problem I want to tackle can be found in many psychology papers and presentations: ‘can X be a predictor of Theory of Mind,’ or ‘do X have false belief understanding?’ I believe that the majority of these questions are raised due to the fact that psychology defines Theory of Mind coarsely. I plan to approach it as a philosopher and develop a more total model. Thus, in my dissertation, I would like to first argue against the generally accepted idea that Theory of Mind is the ability to understand that others can have false beliefs. Instead of associating ToM only with false-belief tasks, I propose a fine grained account with some essential ‘Sub-Theories of Mind.’ These Sub-Theories include, in the order of their emergence: Theory of Vita, Theory of Emotion, Theory of Intention/Desire, Theory of Knowledge, and finally Theory of Belief.

Additionally, I was an IBRAIN student for the last two years. Currently, I am designing an experiment to offer a solution to a century old question in philosophy of language: what is the semantic contribution of proper names to a sentence?

Moreover, I have just submitted a paper on a linguistic concept, evidentiality, and how it challenges the traditional propositional theories that we have in philosophy of language. It seems that while traditional propositional theories can predict how the nature of languages with lexical evidentiality behave, they fail to explain the weak assertion concept in languages with grammatical evidentiality.

Kristin Simmers, Educational Psychology

Current Research: I plan to study how and to what extent knowledge of the interdisciplinary field of Mind, Brain & Education (MBE) research impacts novice and/or pre-service teachers beliefs, attitudes and practices in the classroom. My hope is that these foundational studies can inform future studies exploring effective MBE teacher education programs as well as the impact these may have on teacher efficacy and student outcomes. The first stage of this proposed work would be to create a measure of MBE knowledge and application, which could be administered to UCONN students in the Neag Teacher Education program and/or to early career educators who are recent graduates from UCONN. This measure would also gauge existing beliefs, attitudes and practices and determine correlation between variables. Once we have established a baseline in all measures, we can use the data to design targeted MBE research integration into existing teacher education or professional development to directly address demonstrated areas of need. This could initially take the form of creating modules and may eventually lead to a graduate certificate program, and would involve the collaboration of faculty across neuroscience, psychology and education departments.

Gray Freeman Thomas, Psychological Sciences

Current Research: Current research plans include collecting survey data about perspectives on contentious topics. The purpose of this research is twofold: (1) it will provide us with rich survey data about the perspectives that University of Connecticut students have on contentious topics, and (2) it will serve as a pre-screening opportunity for future studies conducted in the lab.

This is motivated by recent research on polarization and discussion that serves to persuade others of a particular viewpoint. America has seen an increase in ideological polarization over recent years (i.e., Pew Research Center, 2014), which naturally motivates researchers to investigate how these ideals are communicated with others. It is also important to examine how one communicates and persuades others about these ideas both within and across group ideologies.

This survey will serve as a gauge of general opinion of students at the university on controversial topics, and it will also serve as the foundation for future work inviting participants to come into the lab and discuss these contentious topics with others. This survey may also run for an extended period of time, which will allow rich patterns in the longevity of the data collected.

Emma Wing, Psychological Sciences

Current Research:

I am currently working on a project which asks whether humans’ representations of characters in a story become more integrated when these characters interact. Recent computational modeling shows that an RNN analyzes two characters who interacted in a story as more similar to each other than e.g., two characters who did not interact. We will determine if this is the case in humans by manipulating which character interacts with a key object that recurs throughout a complex, 5-clause story – e.g., 'The aunt told her nephew she/he had punctured the ball. Suddenly, a dog nudged the ball and rolled it under the couch. The ball deflated’. Using the Visual World Paradigm, we will monitor eye movements to appropriate scenes while participants listen to these stories. We predict that at the final “ball” in the example, there will be more looks back to whichever protagonist (referenced with the “she” or the “he” in the first sentence) interacted with the ball. We will also correlate the probability of fixating the protagonist, throughout the sequence, with the equivalent similarity profile generated by the RNNs (described recently in Davis & Altmann, Cognition, 2021).

Like my work earlier this year, and the work proposed, this project explores how object reference is processed during real-time language comprehension. It will provide evidence of specific conceptual representational components of events and will add to our knowledge of human sentence processing.

Tingting Zhao, Nursing

Current Research:

I am going to conduct a secondary analysis using infant data and samples during NICU stay and at 8-12 months corrected age (CA) from a large prospective longitudinal study (NR016928, PI: Cong). I will examine the relationships between levels of pain/stress and expression levels of PGC-1 family, AMPK, SIRT-1 and GCN5 genes/protein related to mitochondrial function/dysfunction during NICU stay and 8-12 months CA in preterm infants. The applicant will randomly select 25 preterm infants from each sex subgroup from the parents R01 study (total n=50). Primary measures include: daily pain/stress; Bayley Scale of Infant Development III test at 8-12 months CA; gene expression of PGC-1 family (PGC-1α, PGC-1β and PGC-1- related coactivator [PRC]), AMPK, SIRT-1 and GCN5 and PGC-1 family phosphorylation, acetylation and O-GlcNAcylation at 36-38 weeks CA and 8 -12 months CA. This is a multi-disciplinary research which require the cooperation and expertise from UConn Proteomics & Metabolomics Facility (PMF), Center for Genome Innovation (CGI), Biochemistry and Biophysics lab, School of Nursing, and Connecticut Children's Medical Center.

Like my work earlier this year, and the work proposed, this project explores how object reference is processed during real-time language comprehension. It will provide evidence of specific conceptual representational components of events and will add to our knowledge of human sentence processing.

Undergraduate Research Award Recipients 2021-2022

The Undergraduate Research Supply Award provides students with funds that they can use toward supplies and other expenses associated with an ongoing independent research project. The Undergraduate Summer Research Award provides funds for students to conduct independent research during the summer session.

Fall 2021 and Spring 2022

Research Supply Award Recipients

  • Mandira Gowda – Advisor: Etan Markus
  • Mahit Gupta – Advisor: Ephraim Trakhtenberg
  • Alison Guy – Advisor: Etan Markus
  • Amisha Paul – Advisor: Joanne Conover
  • Anika Veeraraghav – Advisor: Gerry Altmann

Summer 2021

Summer Research Award Recipients

  • Margaux Acorda – Advisor: Inge-Marie Eigsti
  • Olivia Arciero – Advisor: Letty Naigles
  • Tristan Evans – Advisor: Michael O’Neill
  • Jamie Masthay – Advisor: John Salamone
  • Xinming Zhou – Advisor: Emily Myers

Seed Grant Recipients 2020-2021

IBACS Seed Grants provide funding for collaborative research projects across the brain and cognitive sciences. Seed Grants also support applications for equipment, research workshops, events, and other activities compatible with the mission of the Institute.

2020-2021 Recipients

Learn about the PIs and projects that received IBACS Seed Grants this year.

David Martinelli, Neuroscience

Title of Project: Creation of a novel mouse allele to investigate the role of the C1QL protein in the brain

Our research focuses on the brain-specific protein C1q-like (C1QL) and its involvement in the creation of myelin – a substance required for proper cognition. Loss of myelin, such as what occurs in multiple sclerosis (MS), causes neurodegeneration and cognitive defects. We now also appreciate that adaptive changes in myelin can modulate cognition in healthy brains. Myelin is made by oligodendrocyte cells in the brain, and C1QL is selectively expressed in the oligodendrocyte lineage. We have evidence that C1QL drives oligodendrocyte maturation. Therefore, we hypothesize that modulating the signaling activity of C1QL will cause oligodendrocytes to increase myelin production. This could potentially enhance cognition and perhaps be a novel treatment for MS and other diseases. We hope to initiate a collaborative research program combining the molecular genetics of C1QL, a biophysical analysis, and a behavioral analysis using a mouse model for MS to assay for cognitive decline. We need to determine the subcellular location of the C1QL protein. Grant reviewers have repeatedly insisted on this information as required preliminary data. Thus, we hope to acquire funds to generate a novel mouse allele in which the endogenous C1ql gene locus has been modified to include a small epitope tag. With the creation of this new tool, determination of the subcellular location of the protein is expected to be straightforward, and will fuel two co-PI R01 grant applications. The first with Dr. Stephen Crocker will focus on cellular and behavioral consequences of C1QL activity promoting myelin creation, and the second with Dr. Susanne Ressl will focus on the biophysics and biochemistry of C1QL and its receptors. The allele will be created at UConn’s Center for Mouse Genome Modification.

Kevin Manning, Psychiatry

Title of Project: Testing Adaptive Interoception in Aging using Bladder Sensations and Simulated Driving

Social bladder control is predicated on interoceptive knowledge of bladder content.  Cognitive processes interpret and potentially modulate the sensory neural data stream about bladder volume to optimize homeostasis by resolving external experience with internal expectations1,2.  Thus cognitive aging could be one major contributor to disordered urinary perceptions, one that is relatively independent of the actual afferent data stream generated by bladder volumes3.  Yet existing research has not directly explored this possibility. Demonstrating the effect of cognitive aging on the ability to maintain normal urinary perceptions would offer a strong translational link to the laboratory-supported hypothesis that the aging bladder must be understood as reflecting a strained but resilient adaptive system that is subject to the influences of cognitive aging.  A necessary first step in this line of research is the development of an allostatic cognitive challenge which will be sufficiently sensitive to bladder changes and testable in a safe clinical environment. We will use driving simulation as a cognitive stressor and will manipulate the degree of driving difficulty encountered while recording subject reports of bladder fullness through cystometry.  PI Manning has expertise with the use of this driving simulation as a cognitive / allostatic challenge and will supervise this aspect of the testing.  PI Smith has expertise with cystometry (both in the laboratory and as director of the clinical UConn Urodynamics Unit). CO-PI Costello has expertise in cognitive aging and statistical analyses. The project will enable us to measure the impact of cognitive aging on perceptual and driving performance resilience, and directly contribute to pilot data for a NIA R-level grant involving the departments of Geriatrics, Psychiatry, and Urology.

Nicole Landi, Psychological Sciences

Title of Project: Decoding dyslexia: decoding the human mind

Misconceptions about dyslexia are common among laypeople. These misconceptions matter because they could potentially prevent individuals from recognizing the early warning signs of dyslexia, engender mistrust in behavioral diagnostic tests, and promote skepticism about the efficacy of interventions.  Recent findings from our team suggest that these misconceptions arise from intuitive psychology, specifically from Dualism and Essentialism.  In this IBACS grant we explore whether these misconceptions about dyslexia are also present in parents and teachers of children with dyslexia. By unveiling the source of these beliefs, we hope to help elucidate the reason for these lingering misconceptions and, by extension, improve understanding surrounding the diagnosis and treatment for children in need.

Dimitris Xygalatas & Alexandra Paxton, Anthropology & Psychological Sciences 

Title of Project: Psychosocial effects of virtual social gatherings

The current pandemic has both disrupted and highlighted the importance of human connection. Although virtual forms of interaction have stepped in to fill the gap, the degree to which these interactions are sufficiently good substitutes for in-person interaction remains unknown. This project explores the psychosocial dynamics of participation in virtual gatherings through a combination of psychometric surveys and wearable technology. We will use these tools to study on-line and in-person group yoga sessions by investigating group synchrony and how it relates to outcomes pertaining to social connection and mental health. In addition, the project will serve to develop a paradigm that can be used in other real-life social settings. 

Summer Graduate Fellows 2021

IBACS Summer Graduate Fellowships provide three months of research funding to graduate students working on topics with relevance to the brain and cognitive sciences.

2021 Fellowship Recipients

William Armstrong, Physiology & Neurobiology

Current Research: My research will characterize the role of C1QL3 in HCRT/OX projections to NA neurons in the LC, which are critical to sleep- wake regulation. To approach this question, I will use several techniques including IHC, stereotaxic viral injections, mouse genetics and electrophysiology. First, I will perform IHC and fluorescent in situ hybridization to confirm C1ql3 localization in HCRT/OX neurons. I will then inject AAV-Cre-tdT (tdTomato) into the LHA of a C1ql3-mVenusflox/flox mouse to knock out C1ql3. This will allow me to observe differences in HCRT/OX projections to the LC between control and knockout mice. I hypothesize that C1ql3 knockout will result in decreased HCRT/OX synapse density onto NA neurons in the LC, which I will visualize with IHC and quantify. I also expect decreased synaptic function, which I will assess through slice electrophysiology measuring miniature, spontaneous, and evoked EPSCs. Finally, I will inject AAV-Cre+C1ql3-tdT which I hypothesize will rescue C1QL3 expression and restore HCRT/OX fiber density and transmission to the LC.

This interdisciplinary approach will be the first to identify the function of C1QL3 in HCRT/OX neurons and provides a powerful link between molecular neuroscience and broader behavioral phenomena such as sleep and its disorders. My work could also identify a novel genetic marker or therapeutic avenue for narcolepsy if C1QL3 knockout inhibits HCRT/OX function, paving the way for behavioral assays studying sleep in knockout mice.

Megan Chiovaro, Psychological Sciences

Current Research:

At UConn, I am currently engaged in a variety of projects focused on how individuals work together without leaders. Continuing our work on the Arab Spring, my co-authors and I are investigating the differences between publicly available event datasets. Each dataset has a different way of collecting event data, and these different collection methods can produce drastically different results. We are investigating how these differences impact the results of political science research.

My collaborators and I are also writing a paper for a special issue of Behavior Research Methods comparing various time series analyses, including recurrence quantification analysis, vector auto-regression, and cross-correlation. Each method has strengths and disadvantages, but they are rarely used together. Through this project, we hope to introduce researchers to a variety of time series methods and help outline which may be best for their particular situation.

I am also working on a paper using nonlinear analyses for video and audio time series data. Using data-intensive audio and video analysis techniques, we are analyzing how groups of researchers develop ideas for joint research projects aimed at solving difficult societal health problems. This work is also being formulated as a tutorial with accompanying open source code, so that researchers can use our materials to learn these nonlinear methods.

Kelsey Davinson, Psychological Sciences

Current Research:

My current research on infant neural oscillatory development involves two areas of inquiry: resting-state EEG and EEG mu rhythm’s functional properties. Resting-state EEG (RS-EEG) measures brain rhythms while an individual is awake and not engaged in a task or active cognitive/affective processing. What is not yet understood in infancy is how different RS-EEG contexts affect EEG measures, which is informative when determining the appropriate context for RS-EEG acquisition. Further, an examination of co-occurring EEG rhythms in infancy is rare, but essential to more holistic perspectives of brain development. My secondary data analyses examine RS theta/beta ratio as a measure of the dynamic relationship between multiple neural oscillations in different contexts and across infancy. The focus of my other research plans is on the emergence of EEG mu rhythm’s functional properties. It is reactive during action observation and execution, and these “neural mirroring” properties are potentially informative of social information processing. I will be coding, processing, and EEG recordings from 6- to 9-week-old infants during the performance and perception of mouth gestures. My work will identify the mu rhythm frequency range and if there are neural mirroring properties observed at this early age, both have yet to be explored and will inform our understanding of social cognitive processing. My research incorporates cognitive neuroscience and biopsychosocial approaches to development.

Katelyn DeNegre, Molecular & Cell Biology

Current Research: The goal of my study is to understand the function of Xlr genes in brain development, and to confirm the observation of a transgenerational neurobehavioral defect in our knockdown model. Beginning with a male mouse homozygous for the Xlr3 transgene (P), we will investigate the integrity of brain-specific imprinting, brain transcriptomic profiles and neurobehavioral defects in subsequent generations. Imprinted expression of Xlr3b,4b and 4c will be assessed in F1 female who have inherited the compromised X chromosome from the P males. This female then passes the epimutated X to her offspring (F2). F2 male offspring are of interest because they have exhibited behavioral defects in previous experiments. Total RNA will be extracted from brains from neonatal F2 males and subjected to global transcriptome profiling via RNAseq. Additionally, F2 males grown to adulthood will undergo behavior testing in the MBNF. P generation knockdown males are currently in outcross matings to produce the F1 generation. The outcross allows tracing of X chromosome parental origin in F1 females for imprinting assays. The F2 generation will consist of males who possess the lineage traced X chromosome and are either homozygous for the transgene or are wild-type controls. RNA Seq will allow me to explore whether depletion of Xlr3 mRNA affects transcription of other genes in this tissue, thereby confirming Xlr3 as a mediator of transgenerational effects on neurodevelopment.

Caitrin Hall, Psychological Sciences

Current Research: Underlying my research interests is my desire to support marginalized communities and help eradicate oppressive structures. This has motivated me to advance beyond my psychology coursework to learn about critical race theory, systemic racism, and the resulting detrimental outcomes. My recent experience taking White Racism with sociologist Dr. Noel Cazenave emphasized racism as a system of oppression that requires change at the structural, rather than solely the individual, level. While psychology research will be necessary in restructuring social systems, we must study individuals within the context of the whole. In my future work, I aim to bridge the gap between the individual-level focus of psychology and the societal-level focus of sociology in order to progress toward social justice.

Specifically, I will explore the relationship between individual and collective behavior. Research has found that group synchrony cultivates social connectedness, contributes to interpersonal liking, and increases pain tolerance. Previous findings also demonstrate a link between social connectivity and reduced anxiety levels. Together, these results suggest that synchronizing with others may improve wellbeing. By investigating how environmental and social contexts modulate behavior/health outcomes, we may augment our understanding of perception, action, and cognition while advocating for structural changes and interventions that may increase wellness and success in oppressed populations.

Nathan Lautz, Psychological Sciences

Current Research: I’m currently investigating the functional involvement of visual simulation during language comprehension. After hearing the sentence "The hiker saw an eagle in the sky," people are faster to verify that an image of an eagle with outspread wings depicts something in the sentence than an image of an eagle with closed wings. This "shape match effect" could indicate that sentence comprehension involves perceptual simulation (here, simulating the visual form of the eagle). Ostarek et al. (2019) recently challenged this interpretation, using visual interference targeting different levels of visual processing (from low-level up to images of everyday objects with semantic content) to test if this interference disrupted the match effect. They found that only the stimuli with semantic content eliminated the effect, arguing that perceptual simulation does not underlie the match effect. Alternately, we hypothesized a linear trend in the disruption of the effect as visual interference targets successively higher levels of visual processing, indicating increased functional involvement of the visual system in perceptual simulation in successively higher processing areas. Preliminary modeling has revealed this trend. Next we will examine existing fMRI data to ascertain whether the interference stimuli are indeed processed by regions of increasing computational distance from the periphery. This will help elucidate the neurocognitive basis of perceptual simulation during language processing.

Ruth McLeod, Psychological Sciences

Current Research:In the summer of 2021, my plan is to go back into original medical records to collect additional data about our subjects, including quantification of any underlying conditions that may have further affected their developmental outcomes. This will include the infant’s length of stay in the NICU (an indirect measure of health complications), whether the infant experienced necrotizing enterocolitis (a common form of neonatal GI inflammation), as well as any other complications that may have caused trauma or inflammation during birth. We will use this additional data to get a more detailed and refined picture of how inflammatory conditions and general health modulate the neuroprotective effectiveness of adenosine antagonist treatment. We will also be working to collect data from infants who received no treatment with an adenosine antagonist, and comparing their developmental outcomes to those of matched GA who were treated, either early (< 48 hours post-birth) or late (>48 hours post-birth). This will help us to understand the extent of adenosine antagonist protection, and offer new insights to possible mechanisms of action of adenosine antagonists in the context of inflammatory profiles. Specifically, it remains unclear exactly how adenosine antagonists enhance outcomes in preterms. Putative pathways include a reduction in molecular events following ATP failure that could reduce neuronal death, an attenuation of microglial activation that could preserve neuronal integrity.

Hannah Mechtenberg, Psychological Sciences

Current Research: I have several ongoing projects that span neuroscience and psychology. One current focus is on prepositional, or four-term, analogies that take the structure A:B::C:D. Of particular interest over the next six months is to clarify how psycholinguistic properties—including word frequency, word length, concreteness, and age of acquisition—may affect the perceived difficulty of a given analogy. I am currently running an online behavioral study that will provide evidence for which psycholinguistic properties may matter, and at which position within the prepositional analogy. These results will help guide construction of a new stimuli set that will limit confounds and enable us to examine how semantics influences analogical reasoning. I am also working with a team of researchers at UConn on a project that is using fMRI to characterize the neural networks that support passive listening of continuous speech. Not only are we considering how the phonetic information is represented and disambiguated neurally, but the acoustic, lexical, syntactic, and semantic information as well. A project of this scope transcends typical studies of speech perception that tend to target only one level in the processing hierarchy. Over the next six months we hope to organize each stream of research into a cohesive article that elegantly describes how each thread interacts to support naturalistic speech perception.

Katelyn Mooney, Physiology & Neurobiology

Current Research: Currently I am working on investigating the effectiveness of the ketogenic metabolite beta-hydroxybutyrate (BHB) at mediating the effects of traumatic brain injury in Drosophila melanogaster. Traumatic brain injury (TBI) is induced by concussive head trauma which is commonly seen in contact sports like football, rugby, and soccer. TBI is induced in D. melanogaster by a high- impact trauma (HIT) device, commonly referred to as the “fly banger.” The ketogenic diet (KD) is a low carbohydrate and high fat diet that has been successfully used as a therapy for individuals with seizure disorders like epilepsy. Our research aims to test the effectiveness of the KD at treating the effects of TBI on D. melanogaster, particularly male-male aggression and reduced learning. Due to the KD being difficult to implement in model organisms, it will be simulated by adding the metabolite BHB to standard food formula. BHB is present in two enantiomeric forms, S-beta-hydroxybutyrate and R-beta- hydroxybutyrate. Currently, my research is working to understand which form of BHB is most effective at alleviating post-TBI symptoms. In the past we have been successful at reducing male aggression and improving learned behavior following TBI by supplementing food with racemic BHB, so this research aims to micro analyze whether or not a specific enantiomer (R or S) is required and at what levels, to be most effective.

Undergraduate Research Award Recipients 2020-2021

The Undergraduate Research Supply Award provides students with funds that they can use toward supplies and other expenses associated with an ongoing independent research project. The Undergraduate Summer Research Award provides funds for students to conduct independent research during the summer session.

Fall 2020 and Spring 2021

Research Supply Award Recipients

  • Audra Logan – Advisor: Umay Suanda
  • Julia Levin – Advisor: Etan Markus
  • Siddhe Patel – Advisor: Etan Markus
  • Murphy Kenny – Advisor: Linnaea Ostroff

Summer 2020

Summer Research Award Recipients

  • Kerry Morgan – Advisor: James Li
  • Veronica Eskander – Advisor: Anastasios Tzingounis
  • Matthew Phillips – Advisor: Emily Myers